
Micro Manager for Icy

Installation
Configuration
Acquisition
● Snap / Album
● Live
● Multi-D acquisition
Scripting / Development
● Protocols
● (Java) Script
● Plugin

Plan

By default the µManager for Icy plugin should
be already installed. Verify than you have the
last version of the plugin then launch it.

Installation

On first start you should
specify the µManager’s
installation folder to Icy.

Installation

Be sure you installed a compatible version of
µManager (currently only version from 1.4.19
to 1.4.23 are supported).

Configuration

As in µManager you should then select which
configuration to load.

Main window
The main window is very similar to
µManager with some cleanup and
minors changes.
In blue we find the Configurations
Settings part of µManager with
Groups and Presets, in green we
have everything about the
acquisition itself (actions and
settings) and finally in the red part
we can find all µManager for Icy
compatibles plugin to extend its
features.

Configuration
Configuration can be done exactly as
the original µManager. It’s also
possible to access some of the main
basic features of µManager from the
main window menu (by clicking on the
top left icon). We can find here for
instance loading / saving of settings
files, the Configuration Wizard, the
Property Browser and the Pixel Size
Config of the original µManager.

Acquisition
Acquisition part again is very close to the one
from µManager. We can find here the same
actions (in blue), with the same available camera
settings (in red) and of course the acquisition
information (in green).

The only change are these new
parameters (in yellow) which
allow to do live and/or basic
acquisition directly in 3D.

Snap / Album
As in µManager the Snap operation create a new image for each acquisition
where the Album operation will append all acquisitions in the same
Sequence. As presented before and unlike the original µManager, we can now
directly do 3D stack acquisition.

Snap 2D Snap 3D Album 2D Album 3D

Live
Live mode gives you a real time view from the camera as in µManager except
we can now get a 3D stack view by modifying the parameters.

LIVE 2D

LIVE 3D

The advantage of Live 3D is that it can take benefit from the 3D raycasting
rendering of VTK to offer a real time 3D view.

Live

This plugin correspond to the powerful Multi-D
Acquisition tool from µManager.

The graphical
interface is exactly
the same as the one
we can find in
µManager except we
can now see the
acquisition progress.

Multi-D Acquisition

And other...
Plugin Remote is almost the same (except GUI) than the Stage Position
Control from µManager (XY and Z stage position control)

Protocols
Allowing microscope
control and image
acquisition directly from
the protocols !

Protocols - exercice 1
Goal: Design a protocol which can do an image acquisition
on 2 channels.

Protocols - exercice 1 - solution

Protocols - exercice 2
Goal: Design a protocol which allow to do a 3D stack
acquisition. The stack should contains 10 slices where the
first slice is located at Z position = 10µm then each slice
are separated by 5 µm space.

Protocols - exercice 2 - solution

Script
µManager for Icy allow to control your microscope from a simple Java script.
WARNING: don’t forget to launch the Micro-Manager plugin before !

// move the stage to (5, 5, 5)
StageMover.moveXYAbsolute(5, 5)
StageMover.moveZAbsolute(5)

// acquire a single image
image = MicroManager.snapImage()

// create a sequence and display it
sequence = new Sequence(image)
gui.addSequence(sequence)

This simple example will do
the following operations :
● Move the XYZ stage at

position [5,5,5] μm
● Snap a single image and

display it

Script / Development
The main classes and methods to know to use the µManager API in Icy

MicroManager.getCore() Get access to µManager core
MicroManager.setExposure(...) Change camera exposure
MicroManager.snapImage() Acquire an image and return it
MicroManager.getMetadata() Retrieve meta data of the last acquired image

MicroManager.startLiveMode() Start continuous acquisition mode (live)
MicroManager.stopLiveMode() Stop continuous acquisition mode (live)
MicroManager.startAcquisition(...) Start multiple acquisition
MicroManager.stopAcquisition(...) Stop multiple acquisition
MicroManager.getAcquisitionResult() Retrieve result from multiple acquisition

MicroManager classe principale de µManager pour Icy
StageMover classe outil pour gérer le positionnement du microscope

Script - exercice 1
Goals:
● Move the microscope stage (x,y,z) to [5,5,5]
● Acquire 3 images
● Move the stage of 10µm in Z between each

acquisition
● Display the result in Icy as a 3D stack image.

Script - exercice 1 - solution
z = 0
sequence = new Sequence() // create the result sequence

StageMover.moveXYAbsolute(5, 5) // move to position (5, 5, 5)
StageMover.moveZAbsolute(5)

image = MicroManager.snapImage() // acquire 1 image
sequence.setImage(0, z++, image) // set it in resulting sequence at position 0
StageMover.moveZRelative(10) // shift microscope Z position by 10
image = MicroManager.snapImage() // acquire 1 image
sequence.setImage(0, z++, image) // set it in resulting sequence at position 1
StageMover.moveZRelative(10) // shift microscope Z position by 10
image = MicroManager.snapImage() // acquire 1 image
sequence.setImage(0, z, image) // set it in resulting sequence at position 2

gui.addSequence(sequence) // show the sequence in Icy

Goals:

● Acquire a Sequence with :
○ 20 frames with exposure time = 10 + (frame_index * 5)
○ 10 slices with Z position = -5 + slice_index

● Do an automatic threshold on obtained Sequence and display the result
as a ROI (Region Of Interest)

Tips: Automatic threshold can be done using the KMeans method to retrieve
the threshold intensity, then we process the threshold itself based on this
intensity value (KMeans.computeKMeansThresholds(...) and Thresholder…)

Script - exercice 2

Script - exercice 2 - solution
sequence = new Sequence() // create the result sequence
gui.addSequence(sequence) // display it

StageMover.moveXYAbsolute(5, 5) // move microscope to position XY (5, 5)

for(t = 0; t < 20; t++)
{
 MicroManager.setExposure(10 + (t * 5)) // set exposure depending T position

 for(z = 0; z < 10; z++)
 {
 StageMover.moveZAbsolute(-5 + z, true) // set microscope Z position by 10
 image = MicroManager.snapImage() // acquire 1 image
 sequence.setImage(t, z, image) // set it in resulting sequence at position 0
 }
}

value = KMeans.computeKMeansThresholds(sequence, 0, 2, 256) // find threshold value
rois = Thresholder.threshold(sequence, 0, value) // apply threshold and get ROIs

for(i = 0; i < rois.length; i++) // put ROIs on the sequence
 sequence.addROI(rois[i])

µManager core access
You can access the internal µManager core and so get access to all the
functionalities of the internal µManager API. For instance you can grab value
for a specific property and more generally modify some acquisition
parameters (see Programming Guide - Using device properties)

µManager core usage (from µManager):

core.getProperty(...)

µManager core usage (from Icy):

MicroManager.getCore().getProperty(...)

https://micro-manager.org/wiki/Micro-Manager_Programming_Guide#Using_device_properties

Script - µManager core access
importClass(Packages.org.micromanager.utils.MDUtils)

core = MicroManager.getCore()
image = MicroManager.snapImage()
meta = MicroManager.getMetadata()

println("Binning: " + MDUtils.getBinning(meta))
println("Pixel type: " + MDUtils.getPixelType(meta))

bd = core.getProperty("Camera", "BitDepth")
exposure = core.getProperty("Camera", "Exposure")
MicroManager.setExposure(10)
core.setProperty("Camera", "Binning", 2)

MicroscopePlugin class
When we develop a new Icy plugin for Micro-Manager it’s important to
extend the abstract class MicroscopePlugin instead of Plugin or
PluginActionable. In this case it’s important to respect the following rules:
● Overload the start() method (instead of the run() method)
● Overload the shutdown() method if some specific actions need to be

done when plugin is terminated.

Using the MicroscopePlugin class assure that µManager will be loaded before
the plugin starts, also it provides methods as onSystemConfigurationLoaded(),
onCorePropertyChanged() and onExposureChanged() to detect configuration
changes from µManager.

Events
Micro-Manager for Icy adds new events to make life easier for developer.

MicroManager.addAcquisitionListener(...)
Allow to listen acquisition events (start / new image / end).

MicroManager.addLiveListener(...)
Allow to listen events for Live mode (start / new image / end).

StageMover.addListener(...)
Allow to listen events from the microscope stage position (position changed)

So the developer can, for instance, easily start a specific task when receiving
a new image during the acquisition.

Plugin - Tutorial project 1
public class MyPlugin extends MicroscopePlugin {

@Override
public void start()
 {

try {
Sequence result = new Sequence(); // Create the resulting sequence
StageMover.moveXYAbsolute(5, 5); // Set microscope X and Y positions
StageMover.moveZAbsolute(5); // Set microscope Z position
result.addImage(MicroManager.snapImage()); // Snap an image and add it to result
StageMover.moveZRelative(10); // Move the microscope by 10 μm in Z
result.addImage(MicroManager.snapImage()); // Snap again
StageMover.moveZRelative(10); // Move again
result.addImage(MicroManager.snapImage()); // Then Snap again
addSequence(result); // Finally, show the resulting sequence into Icy

} catch (Exception e) {
// Eclipse will ask you to catch the exception, this is caused when we are unable to move the stage

}
}

}

Plugin - exercice
Objectifs :
● Start the Live mode
● Register to receive events from Live mode.
● For each received image, display the XY dimension in

the output console.

Plugin - exercice - solution
public class MyPlugin extends MicroscopePlugin implements LiveListener {

public void start() {
try {

MicroManager.addLiveListener(this); // register listener first
MicroManager.startLiveMode(); // then start live acquisition

} catch (Exception e) {
// we need to catch possible exception here on startLiveMode()

}
}

public void liveImgReceived(IcyBufferedImage image) {
try {

JSONObject meta = MicroManager.getMetadata();
System.out.println(“Image size: “ + MDUtils.getHeight(meta()) + “ x “ MDUtils.getWidth(meta));

} catch (JSONException e) {
// Exception when asked tags doesn’t exist

}
}

public void liveStarted() {}
public void liveStopped() {}

}

